RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SIXTH SEMESTER EXAMINATION, JUNE 2022 THIRD YEAR (BATCH 2019-22)

Date : 13/06/2022 Time : 11.00 am – 1.00 pm

MATHEMATICS (Honours) Paper : DSE 3 [Topology]

Full Marks : 50

[4+5+3]

[5+3]

Answer <u>all</u> the questions. Maximum you can score is 50.

- 1. a) Find the derived set of A in (\mathbb{N}, τ) where $\tau = \{\{n, n+1, n+2, \dots, n \in \mathbb{N}\} \cup \{\phi\}$.
 - b) Show that any topological space is a subspace of a separable space.
 - c) Is \mathbb{R} with lower limit topology 2^{nd} countable? Justify your answer.
- 2. a) Let $g:(\mathbb{R}, \tau_f) \to (\mathbb{R}, \tau)$ be defined by $g(x) = |x| \forall x \in \mathbb{R}$ where τ_f and τ respectively denote the cofinite topology and the usual topology on \mathbb{R} . Verify whether g is open, closed and continuous.
 - b) Let $p: \mathbb{R} \to \mathbb{R}$ be a polynomial. Show that p is a closed map. [(2+2+3)+5]
- 3. a) Prove that a topological space X is completely regular iff for each subbasic open set S in X and for each $x \in S$, \exists a continuous map $f: X \to [0,1]$ such that f(x) = 0 and $f(X-S) = \{1\}$.
 - b) Prove that complete regularity is a hereditary property.
- 4. a) Determine all compact subsets of \mathbb{R} with cocountable topology.
 - b) Prove that every countably compact topological space is pseudocompact.
 - c) Give an example of an open cover of $\left[0, \sqrt{2}\right] \cap \mathbb{Q}$ having no finite subcover. [4+3+4]
- 5. a) Show that $A = \{(x, y) \in \mathbb{R}^2 : x, y \in \mathbb{R} \mathbb{Q}\}$ is not connected in \mathbb{R}^2 .
 - b) Show that the components of a topological space make a partition of the space.
 - c) Find all components of $X = \left\{0, 1, \frac{1}{2}, \frac{1}{3}, \dots \right\}$ in the usual topology. [3+5+3]
- 6. a) Define α^{β} where α and β are two cardinal numbers.
 - b) If X has cardinal number α , prove that $\mathcal{P}(X)$, the power set of X has cardinal number 2^{α} . [2+4]

_____ × _____